Feature-specific attentional priority signals in human cortex.

نویسندگان

  • Taosheng Liu
  • Luke Hospadaruk
  • David C Zhu
  • Justin L Gardner
چکیده

Human can flexibly attend to a variety of stimulus dimensions, including spatial location and various features such as color and direction of motion. Although the locus of spatial attention has been hypothesized to be represented by priority maps encoded in several dorsal frontal and parietal areas, it is unknown how the brain represents attended features. Here we examined the distribution and organization of neural signals related to deployment of feature-based attention. Subjects viewed a compound stimulus containing two superimposed motion directions (or colors) and were instructed to perform an attention-demanding task on one of the directions (or colors). We found elevated and sustained functional magnetic resonance imaging response for the attention task compared with a neutral condition, without reliable differences in overall response amplitude between attending to different features. However, using multivoxel pattern analysis, we were able to decode the attended feature in both early visual areas (primary visual cortex to human motion complex hMT+) and frontal and parietal areas (e.g., intraparietal sulcus areas IPS1-IPS4 and frontal eye fields) that are commonly associated with spatial attention. Furthermore, analysis of the classifier weight maps showed that attending to motion and color evoked different patterns of activity, suggesting that different neuronal subpopulations in these regions are recruited for attending to different feature dimensions. Thus, our finding suggests that, rather than a purely spatial representation of priority, frontal and parietal cortical areas also contain multiplexed signals related to the priority of different nonspatial features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performanc...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

A hierarchy of attentional priority signals in human frontoparietal cortex.

Humans can voluntarily attend to a variety of visual attributes to serve behavioral goals. Voluntary attention is believed to be controlled by a network of dorsal frontoparietal areas. However, it is unknown how neural signals representing behavioral relevance (attentional priority) for different attributes are organized in this network. Computational studies have suggested that a hierarchical ...

متن کامل

Feature- and Object-based Attentional Modulation in the Human Auditory "Where" Pathway

Attending to a visual stimulus feature, such as color or motion, enhances the processing of that feature in the visual cortex. Moreover, the processing of the attended object's other, unattended, features is also enhanced. Here, we used functional magnetic resonance imaging to show that attentional modulation in the auditory system may also exhibit such feature- and object-specific effects. Spe...

متن کامل

Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex.

When multiple objects are present in a visual scene, they compete for cortical processing in the visual system; selective attention biases this competition so that representations of behaviorally relevant objects enter awareness and irrelevant objects do not. Deployments of selective attention can be voluntary (e.g., shift or attention to a target's expected spatial location) or stimulus driven...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2011